--- title: "Data-Overview" output: rmarkdown::html_document: fig_caption: false toc: true toc_depth: 1 css: assets/vignette.css vignette: > %\VignetteIndexEntry{Data Overview} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} %\VignetteDepends{magrittr} %\VignetteDepends{kableExtra} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>", results = "asis", message = FALSE, warning = FALSE ) library(summarytools) library(kableExtra) library(actuar) library(fplot) st_options(plain.ascii = FALSE, style = "rmarkdown") ``` ```{r setup} devtools::load_all() # library(lossrx) data("claims_transactional") data("losses") data("exposures") latest_eval <- losses |> dplyr::filter(eval_date == max(.data$eval_date)) wc_dat <- latest_eval |> dplyr::filter(coverage == "WC") al_dat <- latest_eval |> dplyr::filter(coverage == "AL") ``` ## `lossrx` Datasets `lossrx` comes with some built in data for example usage, including: - a simulated *transactional* claims data.frame - a suite of example WC and AL lossruns combined into a single data.frame - sample exposure data for WC ($ payroll) and AL (vehicles or miles driven) ## Loss Data ```{r} plot_distr( ~ total_incurred | coverage, latest_eval, mod.method = "split" ) ``` **Top 10 Rows**: ```{r top_ten_loss_data} head(losses) |> kable(format = "html", digits = 2) |> kable_styling() ``` **Summary**: ```{r loss_data} print(dfSummary(losses, varnumbers = FALSE, valid.col = FALSE, graph.magnif = 0.76), method = 'render') ``` ### Worker's Compensation **Distribution of Claims** ```{r dists} library(fplot) fplot::plot_distr(wc_dat$total_incurred) plot_distr(~ total_incurred | cause, wc_dat, cumul = TRUE) ``` ```{r} plot_lines( total_incurred ~ program_year, losses ) ```